يمكننا تعريف متوازي الأضلاع على أنه شكل هندسي رباعي الأضلاع، حيث يكون كل ضلعين متقابلين من أضلاعه متوازيين، وكل ضلعين متوازيين منه يكونان متساويين بالطول بالإضافة إلى أن كل زاويتين متقابلتين من زواياه تكونان متساويتين، كما أن قطريه ينصفان بعضهما البعض، ومجموع زواياه الأربعة يساوي (360) درجة، يُطلق على متوازي الأضلاع بأنه شبيه المعين في شكله.
خصائص متوازي الأضلاععندما نفترض أن مساحة متوازي الأضلاع هي (r)، يمكن حساب مساحة متوازي الأضلاع بواسطة معرفة طول كل من الارتفاع والقاعدة وذلك من خلال القانون التالي : r = bh، حيث إن (h) تمثل الارتفاع، وهو عبارة عن المستقيم النازل من الرأس المقابل للضلع الذي عليه، و(h) تُمثل طول القاعدة وهي عبارة عن أي ضلع من أضلاع متوازي الأضلاع.
يمكننا احتساب المساحة أيضاً بمعرفة أطوال ضلعين متجاورين وقياس الزاوية بينهما بواسطة القانون التالي: r =ab.sin(x، حيث إن aوb هما طولا الضلعين المتجاورين فيه بالإضافة لقياس أية زاوية فيه.
كما يُمكن حساب المساحة من خلال معرفة أطوال القطرين وقياس أية زاوية من زواياه المحصورة بين القطرين بالقانون التالي: (r=mn.sin(x)\frac (1) (2 ، حيث إن n ،m هما أطوال القطرين، x هي قياس أية زاوية من الزوايا المحصورة بينهما.
أما محيط متوازي الأضلاع فيمكن حسابه بواسطة العلاقة: (p=2(a+b ، حيث إن aو b يُمثلان أطوال أي ضلعين متجاورين في المتوازي.
الحالات الخاصة في متوازي الأضلاعالمقالات المتعلقة بخصائص متوازي الأضلاع