تعتبر الرياضيات في نظرالعلماء لغة العلم التي من خلالها نعبرعن الظواهرالطبيعية والتجارب العلمية حولنا، فتحتوي الرياضيات على قوانين متعددة نستطيع من خلالها تفسير الظواهر وأيضًا عمل أنظمة رياضيّة تحاكي هذه الظواهر وتقوم بتوضيحها وتبيّن العوامل التي تعتمد عليها مثل المعادلات الرياضية المستخدمة في تحديد العمر النصفي لاضمحلال العناصر المشعّة وغيرها من الأنظمة، فالقوانين الرياضيّة تدخل في جميع مجالات العلم حيث لا نستطيع كتابة تقريرأوعمل تجربة، أو تفسير معضلة علمية دون اللجوء إلى قوانين الرياضيات التي من خلالها نحصل على قيم وحلول تشبه أو تساوي النتائج التي نحصل عليها من خلال التجارب العلمية المختلفة، ومن خلال هذا المقال سوف نعرض عدد من القوانين الرياضيّة المشهورة في المجالات العلمية المختلفة.
يعتبر فيثاغورس" style="color: #2386c8;font-weight: 700;" title="قانون-فيثاغورس">قانون فيثاغورس حالة خاصّة من القانون العام للمثلثات أو المعروف "بقانون جيث التمام" حيث يستخدم قانون فيثاغورس فقط على المثلثات قائمة الزاوية بينما القانون العام يستخدم لجميع المثلثات، هنالك العديد من المجالات والتطبيقات العلمية والعملية التي نستخدم فيها قانون فيثاغورس والقانون العام، ومن هذه التطبيقات إيجاد محصّلة القوى المؤثرة على جسم معين وكذلك تستخدم لدى الحرفيين في عمليات بناء المنازل وتصنيع بعض الأدوات، يقوم كل من القانون العام وقانون فيثاغورس على فكرة إيجاد قيمة أطول ضلع في المثلث وذلك من خلال العلاقات التالية
نفرض أنّ لدينا مثلث له ثلاثة أضلاع (س، ص، ع) حيث الزاوية المحصورة بين الضلعين (س، ص) تساوي β فإنّ مقدار الضلع (ع) يساوي كالآتي:
مربع(ع)=مربع (س)+مربع(ص)–(2 س ص جتاβ)
عندما تكون β=90 درجة فإنّ الجيب التمام يساوي صفراً ونحصل على قانون فيثاغورس لمثلث القائم الزاوية كالآتي:
مربع(ع)=مربع(س)+مربع(ص) حيث الضلع (ع) يعتبر أطول ضلع في المثلث.
تعتبر قوانين ومتطابقات النسب المثلثية من أشهر القوانين المستخدمة في مجال الرياضيات والتطبيقات الفيزيائية مثل: قانون الانعكاس، والانكسار، وتحليل القوى وغيرها من التطبيقات المهمّة، ومن أشهر قوانين النسب المثلثية:
المقالات المتعلقة بقوانين الرياضيات