هو جزءٌ من نظرية الأعداد، ويُمثّل أصغر عددٍ صحيحٍ موجبٍ مضاعفٍ لعددين صحيحين (من غير الصفر والواحد)، أو يُمكن تعريفه على أنّه أصغر مضاعفٍ في قائمتي مضاعفات هذين العددين، بمعنى أنّه بالإمكان قسمة المضاعف المشترك الأصغر على كلا العددين دون باقي قسمة، ويُرمز له بالعربية (م.م.أ)، أمّا بالإنجليزية فرمزه (Icm).
مثال توضيحي للتعريف: حتى نبيّن المضاعف المشترك الأصغر للعددين ( 2 و 3 )، نأخذ مضاعفات العدد 2 ومضاعفات العدد 3، ثمّ نجد المضاعفات المشتركة بين العددين ويُمثّل أصغرها المضاعف المشترك الأصغر للعددين كالآتي:
من مضاعفات العدد 2: 2 ، 4 ، 6 ، 8 ، 10 ، 12 ، 14 ، 16 ، 18 ... من مضاعفات العدد 3: 3 ، 6 ، 9 ، 12 ، 15 ، 18 ... المضاعفات المشتركة للعددين (2 ، 3) هي: 6 ، 12 ، 18.
نلاحظ أنّ العدد 6 هو أصغر هذه المضاعفات وبالتالي فإنّه يُمثل المضاعف المشترك الأصغر للعددين 2 و3.
2\21 + 1\6 = 4\42 + 7\42 = 11\42 يتضح هنا أنّ المضاعف المشترك الأصغر للعددين (21 و6) هو 42، لذلك استخدمناه مقاماً موحداً للكسرين، وجمعنا بسطيهما معاً.
يُمكن إيجاد المضاعف المشترك الأصغر لعددين أو أكثر من خلال كتابة كلّ عددٍ على صورة حاصل ضرب الأعداد الأولية له، فمثلاً يكون المضاعف المشترك الأصغر للعددين 4 و6 كالآتي:
نكتب العدد 4 على صورة حاصل ضرب الأعداد الأولية له: 2×2 نكتب العدد 6 على صورة حاصل ضرب الأعداد الأولية له: 2×3 المضاعف المشترك الأصغر هو: 2 × 2 × 3 = 12.
المقالات المتعلقة بطريقة إيجاد المضاعف المشترك الأصغر