محتويات
متوازي المستطيلات
متوازي المستطيلات هو عبارةٌ عن مجسمٍ يتكون سطحه من ستة مستطيلات؛ مثل: الباب، والخزانة، وعلبة الكبريت...، ولمتوازي المستطيلات 12 حرفاً، والحرف هو عبارةٌ عن نقطة التقاء أي وجهين في متوازي المستطيلات، أمّا نقطة التقاء ثلاثة حروفٍ فتسمى رأساً، ولمتوازي المستطيلات ثمانية رؤووس.
خصائص متوازي المستطيلات
قانون حجم متوازي المستطيلات
ينتمي متوازي المستطيلات إلى عائلة الموشورات (prismes) فهو موشورٌ ذو زاويةٍ قائمةٍ، ويمكن تمثيل متوازي المستطيلات بأبعادٍ ثلاثيةٍ وبذلك يمكن أن يحسب له حجمٌ. وقانون حساب حجم متوازي المستطيلات هو عبارةٌ عن حاصل ضرب أبعاده الثلاثة.
حجم متوازي المستطيلات= الطول×العرض×الارتفاع، وبما أن مساحة قاعدة متوازي المستطيلات تساوي= الطول×العرض فإنّنا نستطيع القول بأنّ حجم متوازي المستطيلات يساوي مساحة القاعدة×الارتفاع، (للانتباه الحجوم كلها تكون مكعبةً ويرمز لها مثلاً م³، أو سم³، أو دسم³؛ لأنّها عبارةٌ عن ناتج ضرب ثلاثة قيم).
أمثلة:
المكعّب
هناك حالةٌ خاصّةٌ من متوازي المستطيلات، وهي المكعب والذي يحسب حجمه بحاصل ضرب أبعاده الثلاثة والتي هي متساوية، الطول=العرض=الارتفاع، حجم المكعب= الطول×العرض×الارتفاع= الضلع³.
مثال: متوازي مستطيلاتٍ مساحة قاعدته 144سم²،أوجد طوله وعرضه وارتفاعه وحجمه.
الحل: مساحة القاعدة= الطول×العرض (هذا مكعب فيه الطول= العرض=الارتفاع) مساحة القاعدة= الضلع² الطول = 12سم العرض= 12سم الارتفاع= 12سم الحجم=³12= 1728سم³.
نستطيع القول هنا بأن كل مكعبٍ هو متوازي مستطيلات، ولكن لا نستطيع القول بأن كل متوازي مستطيلاتٍ هو مكعب، فليس كل متوازي مستطيلات أضلاعه متساوية.
المقالات المتعلقة بقانون حجم متوازي المستطيلات