محتويات
المثلث
يوجد الكثير من الأشكال الهندسية المختلفة أبرزها المربع والمستطيل، والمخروط والمكعب إضافةً للمثلث، والتي تستخدم في تطبيقات عديدة سواء أكانت تتعلق بالرياضيات بشكل مباشر أو بعلوم أخرى ذات علاقة به، ولكل من هذه الأشكال قوانين معينة خاصة به تتضمن إيجاد مساحتها وأحجامها وغيرها من الخصائص الأخرى، إضافةً إلى مجموعة من القواعد الثابتة التي لا يمكن إثبات صحتها إلا باتباع براهين وإثباتات معينة، وسوف نتحدث هنا عن المثلث وتصنيفاته تحديداً.
المثلث واحد من أبرز الأشكال الأساسية في الهندسة، وهو شكل يتألف من ثلاثة أضلاع تصل بينها ثلاثة رؤوس، وهذه الأضلاع عبارة عن قطع مستقيمة، ويكون حاصل جمع الطول للضلعين فيه أكبر مقداراً من طول ضلعه الثالث.
أنواع المثلثات وتقسيماتها
هناك أنواع مختلفة من المثلثات بحيث يتم تصنيفها بناءً على أطول أضلاعها وقياس زاويتها، بالشكل التالي:
حسب طول الأضلاع
حسب زوايا المثلث
حقائق عن المثلث
تطابق المثلثات
تتطابق المثلثات إذا توفرت أحد الشروط التالية:
نظرية فيثاغورس
تنطبق القاعدة على المثلث قائم الزاوية، وهي تنص على أنّ المثلث قائم الزاوية يكون فيه مربع طول الوتر مساوياً لمجموع مربعي طولي الضلعين القائمين (ج2 = أ2 + ب2 )، وهذا يعني أنّ معرفة طولي ضلعين كافٍ لإيجاد طول الضلع الثالث.
المقالات المتعلقة ببحث عن تصنيف المثلثات